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Abstract. Self-similar properties of proton structure in the kinematic region of low values of the Bjorken
variable x are introduced and studied numerically. A description of the proton structure function F2(x, Q2)
reflecting self-similarity is proposed with a few parameters which are fitted to recent HERA data. The spe-
cific parametrisation provides an excellent description of the data which cover the region of four momentum
transfer squared 0.045 ≤ Q2 ≤ 120GeV2, and of the Bjorken variable x 6.2 · 10−7 ≤ x ≤ 0.01.

1 Introduction

Recent measurements of the H1 [1] and ZEUS [2] collab-
orations at HERA enable one to study the proton struc-
ture in the region of low Q2 <∼ 1GeV2, where perturba-
tive QCD has to face computation difficulties arising from
the increase of the strong coupling constant αs(Q2). Nev-
ertheless, there are a number of approaches to describe
the transition to low Q2 at small x together with the
region Q2 > 1GeV2, which is described by perturbative
QCD very well. Such attempts involve reggeon exchange
ideas [3], dipole interactions [4], vector meson dominance
(VMD) [5], efficient parametrisations [6] and others.

This letter presents a different point of view, based on
the idea that the proton structure at low x is of fractal
nature1. Using the fractal dimension concept [8], a simple
parametrisation of the proton structure function F2(x, Q2)
is obtained with a few well-defined parameters. A numeric
study is made using recent small x HERA data for Q2

between 0.045GeV2 and 120GeV2.

2 Fractal dimension

The concept of fractal dimension requires one to under-
stand what is meant by dimension. In non-fractional di-
mensions the number of dimensions corresponds to the
number of independent directions in a corresponding co-
ordinate system. For example, a line has obviously one
dimension, a square two and a cube has three dimensions.
The dimension of the Sierpinski gasket [9], shown in Fig. 1,
needs a more general definition.

The cube, square and line are self-similar objects: when
a line is broken in the middle two lines are obtained, each

a e-mail: lastovic@ifh.de
1 A related approach employing self-organised criticality was
proposed in [7].

Fig. 1. Sierpinski gasket fractal in iterations No. 1, 3 and 6
(from left). Iteration No. 1 corresponds to the seed image which
is arbitrary while the iteration always converges to the same
object

of half length. By magnifying one of them by a factor of
two the original line is rebuilt. The same may be done
by dividing a square into four small squares or a cube
into smaller cubes. For example, when the magnification
factor for a square is 3 the number of smaller squares
will be 32 = 9; for a cube the same magnification gives
33 = 27 cubes. In general, when M is the magnification
factor, then the number of objects will be MD, where D
is the dimension of the object. The dimension D can thus
be defined by

D =
logMD

logM
=

log(number of self-similar objects)
log(magnification factor)

. (1)

According to this formula, the dimension of the Sier-
pinski gasket is fractional. When the magnification factor
M is 2 there are three identical pieces of the gasket, for
M = 4 the gasket consists of nine small copies of itself.
Therefore its fractal dimension is defined by

D =
log 3
log 2

=
log 9
log 4

= 1.58496 . . . (2)

Roughly speaking, the fractal dimension describes how
complicated or how large a self-similar object is. A plane is
“larger” than a line. The Sierpinski gasket is not a line but
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also far from being a plane. Actually, there exist fractals
which are constructed from lines but have dimensions 2
or 3, and therefore fill a plane or a space. An example of
such a curve is the so-called Hilbert curve.

The definition of a dimension, given in (1), may be
generalised for the case of non-discrete fractals. In this
generalisation, the magnification (scaling) factor is a real
number z and the number of self-similar objects is rep-
resented by a density function f(z). Taking into account
that the dimension may change with scaling, the local di-
mension is defined by

D(z) =
∂ log f(z)

∂ log z
. (3)

For ideal mathematical fractals, as discussed so far,
D(z) is constant for the whole fractal. Introducing a scale
dependent dimension is natural because many fractals in
nature (e.g. plants or coastlines) are not mathematically
ideal and usually have a fractal structure only for a certain
region of magnification. In such a region, the dimension
is approximately constant, D(z) = D, and, following (3),
the density function f(z) is given by

log f(z) = D · log z +D0, (4)

where D0 defines the normalisation of f(z), which thus
has a power law behaviour, f(z) ∝ zD.

In general, fractals may have two independent magni-
fication factors, z and y. In this case the density f(z, y) is
written in the following way:

log f(z, y) = Dzy · log z · log y +Dz · log z

+Dy · log y +D0. (5)

Here the dimension Dzy represents the dimensional
correlation relating the z and y factors. The function f(z,
y) satisfies a power law behaviour in z for fixed y and in
y for fixed z.

It is important to mention that there is a certain free-
dom in selecting magnification factors without changing
the shape of the function f(z, y). It is possible to use
any non-zero power of a factor multiplied by a constant:
z → azλ. The only effect of such a change is a redefini-
tion of the dimensional parameters D{z,y,zy} and of the
normalisation D0, respectively.

3 Self-similar structure of the proton

Following the dimensional description of the fractal struc-
tures presented, it is interesting to study the properties
of functions describing the proton structure. In quantum
chromodynamics the behaviour of the sea quark densities
is driven by gluon emissions and splittings. The deeper
the proton structure is probed, the more gluon–gluon in-
teractions can be observed. These, in analogy to fractals,
may follow self-similarity, i.e. scaling described by a power
law. Indeed, there are a number of hints for a self-similar
structure. As an example, Fig. 2 shows the unintegrated
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Fig. 2a,b. Logarithm of the unintegrated u-quark density
∂u(x, Q2)/∂Q2 as a function of the Bjorken variable x a and
Q2 b. The full and dashed lines correspond to GRV parametri-
sations in LO and NLO [10], respectively

u-quark density for fixed momentum transfer Q2 and fixed
Bjorken variable x, respectively. For x <∼ 0.01 (below the
valence quark region) the unintegrated density function
in log–log scale is linear. A linear behaviour is also exhib-
ited by the unintegrated density as a function of Q2 for
fixed x. Referring to (4), this suggests that x and Q2 could
be treated as appropriate magnification (scaling) factors.
This is support for the idea that the proton structure ex-
hibits self-similar properties and may be described as a
fractal object.

Magnification factors are supposed to fulfil some crite-
ria. They should be positive, non-zero and have no phys-
ical dimension. The two latter requirements concern the
selection of Q2 as a magnification factor. The physical
dimensionality may be removed by dividing Q2 by a con-
stant Q2

0. For the case of Q2 = 0, the non-zero require-
ment is not fulfilled; however, the access to this region is
needed for the integration of unintegrated densities. Thus
instead of Q2 the choice of 1 + Q2/Q2

0 as a magnifica-
tion factor is appropriate. According to the freedom in
the magnification factor selection, mentioned above, other
equivalent choices are also possible, e.g. Q2

0/(Q
2
0 + Q2),

(Q2
1+Q2)/1GeV2 or similar combinations. It is also more

appropriate to use 1/x as a magnification factor rather
than x itself: when the structure is probed deeper, x goes
to zero while the magnification factor should increase.

4 Structure function parametrisation

The concept of self-similarity, when applied to the proton
confinement structure, leads to a simple parametrisation
of the quark densities within the proton in a straightfor-
ward way based on (5). Using magnification factors 1/x
and 1 + Q2/Q2

0, the unintegrated quark density may be
written in the following general form:

log fi(x, Q2) = D1 · log 1
x

· log
(
1 +

Q2

Q2
0

)
+D2 · log 1

x

+ D3 · log
(
1 +

Q2

Q2
0

)
+Di

0, (6)

where i denotes the quark flavour. Conventional, inte-
grated quark densities qi(x, Q2) are defined as a sum over
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Table 1. Results of the fit. The first row corresponds to a fit to
all parameters; in the second row the parameter D2 was fixed
to 1

D0 D1 D2 D3 Q2
0 [GeV2]

all fit 0.339 0.073 1.013 −1.287 0.062
±0.145 ±0.001 ±0.01 ±0.01 ±0.01

D2 fixed 0.523 0.074 1 −1.282 0.051
±0.014 ±0.001 const. ±0.01 ±0.002

Table 2. Results of the fit, summarised in terms of χ2. The
number of F2 data points is 172; total errors were used for the
χ2 calculation

χ2 χ2/ndf

all fit 136.6 0.82
D2 fixed 138.4 0.82

all contributions with quark virtualities smaller than that
of the photon probe, Q2. Thus fi(x, Q2) has to be inte-
grated over Q2,

qi(x, Q2) =
∫ Q2

0
fi(x, q2)dq2. (7)

Solving equation (7), the following analytical para-
metrisation of a quark density is obtained:

qi(x, Q2) =
eDi

0Q2
0x

−D2

1 +D3 − D1 log x
(8)

×
(

x−D1 log(1+(Q2/Q2
0))
(
1 +

Q2

Q2
0

)D3+1

− 1

)
.

Notice that in this parametrisation only the normali-
sation parameter Di

0 depends on the quark flavour while
the other parameters are flavour independent. This as-
sumption means that all quarks are following the fractal
structure, i.e. the dimensions Di and the magnification
factors are common for all of them and they differ in nor-
malisation only.

The proton structure function F2(x, Q2) is related di-
rectly to the quark densities F2 = x

∑
i e2

i (qi + q̄i). Thus
the assumption about the flavour symmetry of (8) allows
one to express F2(x, Q2) directly in the form given on the
r.h.s. of (8) with x−D2 replaced by x−D2+1 and with a
common normalisation factor eD0 :

F2(x, Q2) =
eD0 Q2

0 x−D2+1

1 +D3 − D1 log x
(9)

×
(

x−D1 log(1+(Q2/Q2
0))
(
1 +

Q2

Q2
0

)D3+1

− 1

)
.

5 Fit to the data

The five parameters Di and Q2
0 are determined using re-

cent data from the HERA experiments H1 [1] and ZEUS
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Fig. 3. Virtual photon–proton cross-section σγ�p ∝
F2(W 2, Q2)/Q2 as a function of Q2 in W 2 bins. H1 (points)
and ZEUS (triangles) measurements are shown along with the
fit to four parameters (full line) and to all five parameters
(dashed line)

[2] in the range 1.5 ≤ Q2 ≤ 120GeV2 (H1) and 0.045 ≤
Q2 ≤ 0.65GeV2 (ZEUS). Additionally a cut x < 0.01
has been applied to exclude the valence quark region. The
fit parameters are given in Tables 1 and 2, and the cor-
responding description of the F2(x, Q2) data is shown in
Figs. 3, 4 and 5. The χ2 was calculated with total errors,
adding the statistical and systematical errors in quadra-
ture. When the relative normalisation of the H1 and ZEUS
data, which cover different Q2 regions, was fitted, no
change beyond 1% was imposed by the fits. Thus the nor-
malisations of the data sets were left untouched.

Referring to Fig. 3 the ratio F2(W 2, Q2)/Q2 is propor-
tional to the virtual photon–proton cross-section σγ�p(W 2,
Q2). In the limit Q2 → 0 and fixed W 2 the parametrisa-
tion (9) behaves like Q2 only for D2 = 1. This may easily
be shown e.g. when the unintegrated structure function
f(x, q2) is introduced:

F2(x, Q2) =
∫ Q2

0
f(x, q2)dq2, (10)

the parametrisation of which is identical to (6), with D2
replaced by D2−1 and Di

0 replaced by D0. If F2(x, Q2) be-
haves like Q2 for Q2 → 0 then f(x, q2) has to behave like
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Fig. 4. Measurement of the structure
function F2(x, Q2) as a function of x in
bins of Q2 by the H1 experiment. The
curve represents the fit to four param-
eters, which is indistinguishable from
the five parameter fit in this kinematic
region
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Fig. 5. Measurement of the structure
function F2(x, Q2) as a function of x in
bins of Q2 by the ZEUS experiment.
The curve represents the fit to four
parameters, which is indistinguishable
from the five parameter fit in this kine-
matic region

a constant for any x = Q2/(W 2 − M2
p ) → 0. That is pos-

sible only if the divergent term, involving D2, is zero, i.e.
for D2 = 1. In this case, since other logarithmic terms go
to zero, the ratio F2(W 2, Q2)/Q2 for Q2 → 0 approaches
the value eD0 .

In the fit with D2 as a free parameter a value very close
to 1 is obtained. Thus a second fit was made, where D2
is fixed to 1 (see Tables 1 and 2, second row). This fit has
four parameters and gives nearly the same χ2/ndf as the
first fit to all five parameters. Within the kinematic range
of the F2 data, both fits are nearly indistinguishable. As
was stated above, the parameter D0 determines the virtual

photon–proton cross-section in the photoproduction limit.
Its value, obtained from the fit, gives

σγp =
[
4π2α

Q2 F2(W 2, Q2)
]

Q2→0

.= 189± 3µb. (11)

This is in approximate agreement with the total photopro-
duction cross-sections measured by the H1 [11] and ZEUS
[12] collaborations which were not used in the fit.

6 Summary

The concept of the self-similar structure of the proton was
introduced. This leads to a parametrisation of the proton
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structure function F2(x, Q2) which describes very well the
low x HERA data, both in the non-perturbative and the
deep-inelastic domain. The introduced formalism uniquely
defines the x and Q2 dependence of parton densities; thus
this approach is applicable also to other measures of pro-
ton structure, like the longitudinal structure function FL,
the diffractive structure function FD

2 or the spin structure
function g1.
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